Skip to main content

Теория: 06 Уравнение \(\displaystyle \left(25^{\cos(x)}\right)^{\sin(x)}=5^{\sqrt{2}\sin(x)}\)

Задание

Решите уравнение \(\displaystyle \sin(x)=0{\small .}\)

\(\displaystyle x_1=2\pi n\ , \, n\in \mathbb{Z}\)

\(\displaystyle x_2=\pi+2\pi n\ , \, n\in \mathbb{Z}\)

Решение

Так как значения синуса лежат на оси \(\displaystyle \rm OY{ \small ,}\) то пересечем прямую \(\displaystyle y=0\) и тригонометрическую окружность.

При этом прямая \(\displaystyle y=0 \) совпадет с осью \(\displaystyle \rm OX{\small : } \)

Получаем два набора решений, соответствующих двум точкам.


Для угла \(\displaystyle 0\) получаем первый набор решений:

\(\displaystyle x_1=0+2\pi n, \, n\in \mathbb{Z}{ \small .}\)
 


Для угла \(\displaystyle \pi\) получаем второй набор решений:

\(\displaystyle x_2=\pi+2\pi n, \, n\in \mathbb{Z}{ \small .}\)


Ответ: \(\displaystyle x_1=2\pi n, \, n\in \mathbb{Z}\) и \(\displaystyle x_2=\pi+2\pi n, \, n\in \mathbb{Z}{ \small .}\)