Skip to main content

Теория: Формулы приведения

Задание

Выберите тригонометрическое выражение, равное данному:

\(\displaystyle \cos\left(\frac{\pi}{2}-\alpha\right)=\) Перетащите сюда правильный ответ

Решение

Каждое из выражений

\(\displaystyle \sin\left(\frac{\pi}{2}\pm \alpha\right),\, \cos\left(\frac{\pi}{2}\pm \alpha\right), \sin\left(\frac{3\pi}{2}\pm \alpha\right),\, \cos\left(\frac{3\pi}{2}\pm \alpha\right),\, \sin\left(\alpha-\frac{\pi}{2}\right),\, \cos\left(\alpha-\frac{\pi}{2}\right)\)

\(\displaystyle \sin\left(\pi\pm \alpha\right),\, \cos\left(\pi\pm \alpha\right), \, \sin\left(\alpha-\pi \right),\, \cos\left(\alpha-\pi\right)\)

равно либо \(\displaystyle \pm\sin\alpha{ \small ,}\) либо \(\displaystyle \pm\cos\alpha{\small .}\)

  • Если в формуле участвует  \(\displaystyle \frac{\pi}{2} \) или   \(\displaystyle \frac{3\pi}{2} { \small ,}\) то синус меняется на косинус, а косинус меняется на синус, иначе функция не меняется.
  • Знак синуса и косинуса определяется по знаку исходного выражения, при условии, что угол \(\displaystyle 0<\alpha<\frac{\pi}{2}{\small .}\)

Так как в выражении \(\displaystyle \cos\left(\frac{\pi}{2}-\alpha\right)\) участвует \(\displaystyle \frac{\pi}{2}{ \small ,}\) то

\(\displaystyle {\bf \cos}\left(\frac{\pi}{2}-\alpha\right)=\,?\,{\bf \sin}\alpha{\small .}\)

 

Далее определим, какой знак должен стоять перед синусом.

Всегда можно считать, что угол \(\displaystyle \alpha\) располагается в первой четверти тригонометрического круга:

Тогда угол \(\displaystyle \frac{\pi}{2}-\alpha\) – это угол, полученный вычитанием угла \(\displaystyle \alpha \) из угла \(\displaystyle \frac{\pi}{2}{\small :}\)

Определим знак исходного выражения, то есть знак \(\displaystyle \cos\left(\frac{\pi}{2}-\alpha\right){\small : }\)

Знак плюс. Значит,

\(\displaystyle \cos\left(\frac{\pi}{2}-\alpha\right)=\color{red}{+}\sin{\alpha}\)

или

\(\displaystyle \cos\left(\frac{\pi}{2}-\alpha\right)=\sin{\alpha}{\small .}\)

Ответ: \(\displaystyle \cos\left(\frac{\pi}{2}-\alpha\right)=\sin{\alpha}{\small .}\)

Формулы приведения и косинус разности

Используем формулу косинуса разности.

Для двух углов \(\displaystyle x\) и \(\displaystyle y\) верно:

\(\displaystyle \cos(x-y)=\cos x\cdot \cos y+\sin x\cdot \sin y{\small .}\)

Тогда

\(\displaystyle \cos\left(\frac{\pi}{2}-\alpha\right)=\cos\frac{\pi}{2}\cdot \cos\alpha+\sin\frac{\pi}{2}\cdot \sin\alpha{\small .}\)

Так как \(\displaystyle \cos\frac{\pi}{2}=0\) и  \(\displaystyle \sin\frac{\pi}{2}=1{ \small ,}\) то получаем:

\(\displaystyle \cos\left(\frac{\pi}{2}-\alpha\right)=0\cdot \cos\alpha+1\cdot \sin\alpha{ \small ,}\)

\(\displaystyle \cos\left(\frac{\pi}{2}-\alpha\right)=\sin\alpha{\small .}\)

Ответ: \(\displaystyle \cos\left(\frac{\pi}{2}-\alpha\right)=\sin\alpha{\small .}\)