Найдите сумму дробей (в ответе запишите дробь, у которой знаменатель является наименьшим общим знаменателем дробей):
\(\displaystyle \frac{10}{14\cdot 15}+\frac{1}{5\cdot 22}\,=\) |
|
Наименьший общий знаменатель
Наименьший общий знаменатель равен наименьшему общему кратному знаменателей.
Для того, чтобы найти сумму дробей
\(\displaystyle \frac{10}{14\cdot 15}+\frac{1}{5\cdot 22}\),
приведем их к наименьшему общему знаменателю.
Знаменатель первой дроби равен \(\displaystyle 14\cdot 15=2\cdot 7\cdot 3\cdot 5\) (разложение на простые).
Знаменатель второй дроби равен \(\displaystyle 5\cdot 22=5\cdot 2 \cdot 11\) (разложение на простые).
Наименьшее общее кратное чисел \(\displaystyle 14\cdot 15=2\cdot 3\cdot 5\cdot 7\) и \(\displaystyle 5\cdot 22=2\cdot 5\cdot 11\) (см. темы НОК и разложение на простые множители) равно
\(\displaystyle НОК(14\cdot 15, 5\cdot 22)=2\cdot 3\cdot 5\cdot 7 \cdot 11=2310\),
следовательно, \(\displaystyle 2\cdot 3\cdot 5\cdot 7 \cdot 11=2310\) - наименьший общий знаменатель дробей \(\displaystyle \frac{10}{14\cdot 15}\) и \(\displaystyle \frac{1}{5\cdot 22}\).
Тогда
\(\displaystyle \frac{10}{14\cdot 15}=\frac{10\cdot {\bf 11}}{2\cdot 3\cdot 5\cdot 7\cdot {\bf11}}=\frac{110}{2310}\)
и
\(\displaystyle \frac{1}{5\cdot 22}=\frac{1\cdot {\bf 3} \cdot {\bf 7}}{2\cdot 5\cdot 11\cdot {\bf 3} \cdot {\bf 7}}=\frac{21}{2310}\).
Теперь можно сложить дроби, заменяя каждую дробь на дробь с общим знаменателем,
\(\displaystyle \frac{10}{14\cdot 15}+\frac{1}{5\cdot 22}=\frac{10\cdot 11}{2\cdot 3\cdot 5\cdot 7\cdot 11}+\frac{1\cdot 3 \cdot 7}{2\cdot 5\cdot 11\cdot 3\cdot 7}=\frac{110}{2310}+\frac{21}{2310}=\frac{110+21}{2310}=\frac{131}{2310}\).
Ответ: \(\displaystyle \frac{131}{2310}\).