Skip to main content

Теориясы: Бірмүшенің мәнін есептеу

Тапсырма

\(\displaystyle x=2u^{\,2}, \, y=5s^{\,3}, \, z=3t^{\,4}{\small }\) алмастыра отырып, \(\displaystyle 2x^{\,3}yz^{\,2}{\small }\) бірмүшесін түрлендіріңіз:

?

Жауапта бірмүшені стандартты түрде жазыңыз.

Жауабы: \(\displaystyle 720u^{\,6}s^{\,3}t^{\,8}{\small .}\)

Шешім

\(\displaystyle 2x^{\,3}yz^{\,2}{\small }\) бірмүшесіне \(\displaystyle x=2u^{\,2}, \, y=5s^{\,3}, \, z=3t^{\,4}\) алмастырайық:

\(\displaystyle 2\color{blue}{x}^{\,3}\color{green}{y}\color{red}{z}^{\,2} \rightarrow2(\color{blue}{2u^{\,2}})^3(\color{green}{5s^{\,3}})(\color{red}{3t^{\,4}})^2{\small .}\)

 

Алынған өрнекті стандарт түрдегі бірмүше түрінде көрсетейік:

\(\displaystyle \begin{array}{l}2(2u^{\,2})^3(5s^{\,3})(3t^{\,4})^2=2(2^1u^{\,2})^3(5s^{\,3})(3^1t^{\,4})^2=\\\kern{5em} =2\cdot 2^{1\cdot 3}\cdot u^{\,2\cdot 3}\cdot 5s^{\,3}\cdot 3^{1\cdot 2}\cdot t^{\,4\cdot 2}=2\cdot 2^3\cdot u^{\,6}\cdot 5s^{\,3}\cdot 3^2\cdot t^{\,8}=\\\kern{10em} =2\cdot 8\cdot u^{\,6}\cdot 5s^{\,3}\cdot 9\cdot t^{\,8}=(2\cdot 8\cdot 5\cdot 9)\cdot u^{\,6}s^{\,3}t^{\,8}=720u^{\,6}s^{\,3}t^{\,8}{\small .}\end{array}\)


Жауабы: \(\displaystyle 720u^{\,6}s^{\,3}t^{\,8}{\small .}\)