Skip to main content

Теория: Выбор решения квадратичного неравенства по графику квадратичной функции

Задание

Известен график параболы \(\displaystyle y=-0{,}3x^2 +0{,}9x +1{,}2{\small .}\)

Выберите решение неравенства \(\displaystyle -0{,}3x^2 +0{,}9x +1{,}2<0{\small .}\)

 

Решение

Нам известен график график параболы \(\displaystyle y=-0{,}3x^2 +0{,}9x +1{,}2{\small.}\)

Значит, для решения неравенства \(\displaystyle -0{,}3x^2 +0{,}9x +1{,}2<0\) нужно выбрать на параболе те точки, у которых вторая координата \(\displaystyle y \) меньше нуля.

Но это точки, которые лежат на части параболы, лежащей ниже оси \(\displaystyle \rm OX {\small : }\)


Найдем расположение координаты \(\displaystyle x\) данных точек:


Получаем, что это точки, лежащие слева и справа от точек пересечения параболы с осью \(\displaystyle \rm OX\) (без точек пересечения, так как в них \(\displaystyle y=0\)).

То есть это все точки левее \(\displaystyle -1 \) и правее \(\displaystyle 4{\small :}\)


Таким образом, решение неравенства – это множество точек на прямой \(\displaystyle (-\infty;\,-1)\cup (4;\, +\infty){\small : }\)