Найдите квадрат разности:
В ответе приведите подобные с целыми коэффициентами.
Под корнем не должно быть множителей, из которых можно извлечь квадратный корень.
Раскроем скобки в выражении \(\displaystyle (2\sqrt{2a}-5\sqrt{3a}\,)^2{\small , }\) используя формулу квадрата разности. Получаем:
\(\displaystyle (2\sqrt{2a}-5\sqrt{3a}\,)^2= \left(2\sqrt{2a}\,\right)^2- 2\cdot 2\sqrt{2a}\cdot 5\sqrt{3a}+ \left(5\sqrt{3a}\,\right)^2 {\small . }\)
Упростим каждое слагаемое по отдельности.
По свойству степени в степени и по определению корня имеем:
\(\displaystyle \left(2\sqrt{2a}\,\right)^2=2^2\cdot \left(\sqrt{ 2a}\,\right)^2= 4\cdot 2a= 8a{\small . } \)
Аналогично
\(\displaystyle \left(5\sqrt{3a}\,\right)^2=5^2\cdot \left(\sqrt{ 3a}\,\right)^2= 25\cdot 3a= 75a{\small . } \)
Кроме того,
\(\displaystyle 2\cdot 2\sqrt{2a}\cdot 5\sqrt{3a}=(2\cdot 2\cdot 5)\cdot (\sqrt{ 2a}\cdot \sqrt{ 3a}\,)= \)
\(\displaystyle =20\sqrt{ 2a\cdot 3a}= 20\sqrt{ 6a^2}= 20\cdot a\sqrt{ 6}=20a\sqrt{ 6} {\small . } \)
Значит,
\(\displaystyle \left(2\sqrt{2a}\,\right)^2- 2\cdot 2\sqrt{2a}\cdot 5\sqrt{3a}+ \left(5\sqrt{3a}\,\right)^2= 8a- 20a\sqrt{ 6}+75a= 83a- 20a\sqrt{ 6}{\small . }\)
Ответ: \(\displaystyle 83a- 20a\sqrt{ 6} {\small . }\)