Ортақ көбейткішті шығарып, көбейткіштерге жіктеңіз:
Алдымен ортақ көбейткішті табайық.
1. Сандық коэффициенттерінің ең үлкен ортақ бөлгішін табайық:
- \(\displaystyle 18=2\cdot 3^2\)
- \(\displaystyle 18=2\cdot 3^2\)
- \(\displaystyle 27=3^3\)
- \(\displaystyle 9=3^2\)
- \(\displaystyle 12=2^2\cdot 3\)
- \(\displaystyle 6=2\cdot 3\)
Жай көбейткіштерге жіктеуден ең үлкен ортақ бөлгіш \(\displaystyle 3{\small }\) тең екендігі шығады.
2. Ең кіші дәрежедегі \(\displaystyle x\) айнымалысы (\(\displaystyle x^{\,10}, \, x^{\, 3},\, x^{\, 5},\, x^{\,9},\, x^{\,8} \) және \(\displaystyle x^{\,7}\) арасынан таңдаймыз) \(\displaystyle x^{\,3}{\small }\) тең.
Осылайша, ортақ көбейткіш \(\displaystyle 3x^{\,3}{\small }\) тең. Оны жақшаның сыртына шығарайық:
\(\displaystyle 18x^{\,10}+18x^{\,3}+27x^{\,5}+9x^{\,9}+12x^{\,8}+6x^{\,7}=3x^{\,3}(6x^{\,7}+6+9x^{\,2}+3x^{\, 6}+4x^{\, 5}+2x^{\, 4}){\small .}\)
Әрі қарай \(\displaystyle 6x^{\,7}+6+9x^{\,2}+3x^{\, 6}+4x^{\, 5}+2x^{\, 4}\) көпмүшесін топтастыру арқылы көбейткіштерге жіктейік.
Берілген көпмүшені стандарт түрде жазайық:
\(\displaystyle 6x^{\,7}+6+9x^{\,2}+3x^{\,6}+4x^{\,5}+2x^{\,4}=6x^{\,7}+3x^{\,6}+4x^{\,5}+2x^{\,4}+9x^{\,2}+6{\small .}\)
Бізге екімүшенің үшмүшеге көбейтіндісін алу қажет болғандықтан, біз үш қосылғыштан топтастырамыз.
Топтастыру әдісінде ең жоғары дәрежелі бірмүшені ең кіші дәрежелі бірмүшемен топтастыруға болмайды (кіші дәреже нөлге тең болуы мүмкін).
Біздің жағдайда жоғары дәрежелі бірмүше – бұл \(\displaystyle 6x^{\,7}\) (жетінші дәреже), ал кіші дәрежелі бірмүше – бұл \(\displaystyle 6\) (нөлдік дәреже). Яғни, \(\displaystyle 6x^{\,7}\) және \(\displaystyle 6\) бірмүшелері әр түрлі жақшада болуы керек.
Сондықтан топтастырудың барлық мүмкін алты нұсқасын аламыз:
1) \(\displaystyle \color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{blue}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{4x^{\,5}}\big)+\big(\color{blue}{2x^{\,4}}+\color{blue}{9x^{\,2}}+\color{blue}{6}\big){\small ,}\)
2) \(\displaystyle \color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{blue}{4x^{\,5}}+\color{red}{2x^{\,4}}+\color{blue}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{2x^{\,4}}\big)+\big(\color{blue}{4x^{\,5}}+\color{blue}{9x^{\,2}}+\color{blue}{6}\big){\small ,}\)
3) \(\displaystyle \color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{blue}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{red}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{9x^{\,2}}\big)+\big(\color{blue}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{blue}{6}\big){\small ,}\)
4) \(\displaystyle \color{red}{6x^{\,7}}+\color{blue}{3x^{\,6}}+\color{red}{4x^{\,5}}+\color{red}{2x^{\,4}}+\color{blue}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{4x^{\,5}}+\color{red}{2x^{\,4}}\big)+\big(\color{blue}{3x^{\,6}}+\color{blue}{9x^{\,2}}+\color{blue}{6}\big){\small ,}\)
5) \(\displaystyle \color{red}{6x^{\,7}}+\color{blue}{3x^{\,6}}+\color{red}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{red}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{4x^{\,5}}+\color{red}{9x^{\,2}}\big)+\big(\color{blue}{3x^{\,6}}+\color{blue}{2x^{\,4}}+\color{blue}{6}\big){\small ,}\)
6) \(\displaystyle \color{red}{6x^{\,7}}+\color{blue}{3x^{\,6}}+\color{blue}{4x^{\,5}}+\color{red}{2x^{\,4}}+\color{red}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{2x^{\,4}}+\color{red}{9x^{\,2}}\big)+\big(\color{blue}{3x^{\,6}}+\color{blue}{4x^{\,5}}+\color{blue}{6}\big){\small .}\)
Ұсынылған нұсқалардың әрқайсысын көбейтіндіге жіктеуді кездестірмейінше қарастыра береміз.
1. Бірінші нұсқа.
\(\displaystyle \color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{blue}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{4x^{\,5}}\big)+\big(\color{blue}{2x^{\,4}}+\color{blue}{9x^{\,2}}+\color{blue}{6}\big){\small ,}\)
\(\displaystyle (6x^{\,7}+3x^{\,6}+4x^{\,5}){\small }\) бірінші жақшасында ортақ көбейткішті шығарайық.
- \(\displaystyle 6,\ 3\) және \(\displaystyle 4\) сандық коэффициенттерінің ең үлкен ортақ бөлгіші \(\displaystyle ЕҮОБ(6,3,4)=1{\small }\) тең.
- Ең кіші дәрежедегі \(\displaystyle x\) айнымалысы (\(\displaystyle x^{\,7},\, x^{\,6}\) және \(\displaystyle x^{\,5}\) арасынан таңдаймыз) \(\displaystyle x^{\,5}{\small }\) тең.
Яғни, \(\displaystyle (6x^{\,7}+3x^{\,6}+4x^{\,5})\) үшін ортақ көбейткіш \(\displaystyle x^{\, 5}{\small }\) тең. Оны жақшаның сыртына шығарып, келесіні аламыз:
\(\displaystyle 6x^{\,7}+3x^{\,6}+4x^{\,5}=x^{\, 5}(6x^{\,2}+3x+4){\small .}\)
\(\displaystyle (2x^{\,4}+9x^{\,2}+6){\small }\) екінші жақшасындағы ортақ көбейткішті шығарайық. Соңғы қосылғыш сан болғандықтан, онда тек ортақ сандық көбейткішті шығаруға болады.
\(\displaystyle 2,\ 9\) және \(\displaystyle 6\) сандық коэффициенттерінің ең үлкен ортақ бөлгіші \(\displaystyle ЕҮОБ(2,9,6)=1{\small }\) тең. Сондықтан ортақ көбейткіш жоқ (\(\displaystyle 1\) қоспағанда) және
\(\displaystyle 2x^{\,4}+9x^{\,2}+6=(2x^{\,4}+9x^{\,2}+6){\small .}\)
Келесі жіктеулерде
\(\displaystyle 6x^{\,7}+3x^{\,6}+4x^{\,5}=x^{\, 5}\color{red}{(6x^{\,2}+3x+4)}\) және \(\displaystyle 2x^{\,4}+9x^{\,2}+6=\color{blue}{(2x^{\,4}+9x^{\,2}+6)}\)
жақшалар тең болмағандықтан
\(\displaystyle \color{red}{(6x^{\,2}+3x+4)} =\not \color{blue}{(2x^{\,4}+9x^{\,2}+6)}{\small ,}\)
онда бұл топтастыру нұсқасы сәйкес келмейді.
Келесі топтастыру нұсқасына өтейік (және көбейткіштерге жіктеуді алғанға дейін жалғастыра береміз).
\(\displaystyle \ldots \, \ldots\, \ldots\)
3. Үшінші нұсқа.
\(\displaystyle \color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{blue}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{red}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{9x^{\,2}}\big)+\big(\color{blue}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{blue}{6}\big){\small ,}\)
\(\displaystyle (6x^{\,7}+3x^{\,6}+9x^{\,2}){\small }\) бірінші жақшасында ортақ көбейткішті шығарайық.
- \(\displaystyle 6,\ 3\) және \(\displaystyle 9\) сандық коэффициенттерінің ең үлкен ортақ бөлгіші \(\displaystyle ЕҮОБ(6,3,9)=3{\small }\) тең.
- Ең кіші дәрежедегі \(\displaystyle x\) айнымалысы (\(\displaystyle x^{\,7},\, x^{\,6}\) және \(\displaystyle x^{\,2}\) арасынан таңдаймыз) \(\displaystyle x^{\,2}{\small }\) тең.
Яғни, \(\displaystyle (6x^{\,7}+3x^{\,6}+9x^{\,2}\,)\) үшін ортақ көбейткіш \(\displaystyle 3x^{\, 2}{\small }\) тең. Оны жақшаның сыртына шығарып, келесіні аламыз:
\(\displaystyle 6x^{\,7}+3x^{\,6}+9x^{\,2}=3x^{\, 2}(2x^{\,5}+x^{\,4}+3){\small .}\)
\(\displaystyle (4x^{\,5}+2x^{\,4}+6){\small }\) екінші жақшасындағы ортақ көбейткішті шығарайық. Соңғы қосылғыш сан болғандықтан, онда тек ортақ сандық көбейткішті шығаруға болады.
\(\displaystyle 4,\ 2\) және \(\displaystyle 6\) сандық коэффициенттерінің ең үлкен ортақ бөлгіші \(\displaystyle ЕҮОБ(4,2,6)=2{\small }\) тең. Оны жақшаның сыртына шығарып, келесіні аламыз:
\(\displaystyle 4x^{\,5}+2x^{\,4}+6=2(2x^{\,5}+x^{\,4}+3){\small .}\)
Сонда
\(\displaystyle 6x^{\,7}+3x^{\,6}+9x^{\,2}=3x^{\, 2}\color{blue}{(2x^{\,5}+x^{\,4}+3)}\)
және
\(\displaystyle 4x^{\,5}+2x^{\,4}+6=2\color{blue}{(2x^{\,5}+x^{\,4}+3)}{\small .}\)
Екі өрнектің де ортақ көбейткіші бар \(\displaystyle \color{blue}{(2x^{\,5}+x^{\,4}+3)}{\small .}\) Оны жақшаның сыртына шығарайық:
\(\displaystyle 3x^{\, 2}\color{blue}{(2x^{\,5}+x^{\,4}+3)}+2\color{blue}{(2x^{\,5}+x^{\,4}+3)}=\color{blue}{(2x^{\,5}+x^{\,4}+3)}(3x^{\,2}+2){\small .}\)
Осылайша,
\(\displaystyle \begin{aligned}6x^{\,7}+3x^{\,6}+4x^{\,5}+2x^{\,4}+9x^{\,2}+6&=\big(6x^{\,7}+3x^{\,6}+9x^{\,2}\big)+\big(4x^{\,5}+2x^{\,4}+6\big)=\\&=3x^{\, 2}(2x^{\,5}+x^{\,4}+3)+2(2x^{\,5}+x^{\,4}+3)=\\&=(2x^{\,5}+x^{\,4}+3)(3x^{\,2}+2),\\\end{aligned}\)
және, демек,
\(\displaystyle \begin{aligned}18x^{\,10}+18x^{\,3}+27x^{\,5}+9x^{\,9}+12x^{\,8}+6x^{\,7}&=3x^{\,3}(6x^{\,7}+6+9x^{\,2}+3x^{\,6}+4x^{\,5}+2x^{\,4})=\\&=3x^{\,3}(2x^{\,5}+x^{\,4}+3)(3x^{\,2}+2){\small .}\end{aligned}\)
Жауабы: \(\displaystyle 3x^{\,3}(2x^{\,5}+x^{\,4}+3)(3x^{\,2}+2){\small .}\)