Көбейткіштерге жіктеңіз:
Берілген көпмүшені стандарт түрде жазайық:
\(\displaystyle 6x^{\,7}+6+9x^{\,2}+3x^{\,6}+4x^{\,5}+2x^{\,4}=6x^{\,7}+3x^{\,6}+4x^{\,5}+2x^{\,4}+9x^{\,2}+6{\small .}\)
Бастапқыда бұл көпмүше екі көпмүшенің көбейтіндісі екенін білеміз, олардың біреуінде тек үш қосылғыш, ал екіншісінде екі қосылғыш бар. Сондықтан үш қосылғыштан топтастырамыз.
Топтастыру әдісінде ең жоғары дәрежелі бірмүшені ең кіші дәрежелі бірмүшемен топтастыруға болмайды (кіші дәреже нөлге тең болуы мүмкін).
Біздің жағдайда жоғары дәрежелі бірмүше – бұл \(\displaystyle 6x^{\,7}\) (жетінші дәреже), ал кіші дәрежелі бірмүше – бұл \(\displaystyle 1\) (нөлдік дәреже). Яғни, \(\displaystyle 6x^{\,7}\) және \(\displaystyle 1\) бірмүшелері әрқашан әр түрлі жақшада болуы керек.
Сондықтан топтастырудың барлық мүмкін алты нұсқасын аламыз:
1) \(\displaystyle \color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{blue}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{4x^{\,5}}\big)+\big(\color{blue}{2x^{\,4}}+\color{blue}{9x^{\,2}}+\color{blue}{6}\big){\small ,}\)
2) \(\displaystyle \color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{blue}{4x^{\,5}}+\color{red}{2x^{\,4}}+\color{blue}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{2x^{\,4}}\big)+\big(\color{blue}{4x^{\,5}}+\color{blue}{9x^{\,2}}+\color{blue}{6}\big){\small ,}\)
3) \(\displaystyle \color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{blue}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{red}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{9x^{\,2}}\big)+\big(\color{blue}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{blue}{6}\big){\small ,}\)
4) \(\displaystyle \color{red}{6x^{\,7}}+\color{blue}{3x^{\,6}}+\color{red}{4x^{\,5}}+\color{red}{2x^{\,4}}+\color{blue}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{4x^{\,5}}+\color{red}{2x^{\,4}}\big)+\big(\color{blue}{3x^{\,6}}+\color{blue}{9x^{\,2}}+\color{blue}{6}\big){\small ,}\)
5) \(\displaystyle \color{red}{6x^{\,7}}+\color{blue}{3x^{\,6}}+\color{red}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{red}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{4x^{\,5}}+\color{red}{9x^{\,2}}\big)+\big(\color{blue}{3x^{\,6}}+\color{blue}{2x^{\,4}}+\color{blue}{6}\big){\small ,}\)
6) \(\displaystyle \color{red}{6x^{\,7}}+\color{blue}{3x^{\,6}}+\color{blue}{4x^{\,5}}+\color{red}{2x^{\,4}}+\color{red}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{2x^{\,4}}+\color{red}{9x^{\,2}}\big)+\big(\color{blue}{3x^{\,6}}+\color{blue}{4x^{\,5}}+\color{blue}{6}\big){\small .}\)
Ұсынылған нұсқалардың әрқайсысын көбейтіндіге жіктеуді кездестірмейінше қарастыра береміз.
1. Бірінші нұсқа.
\(\displaystyle \color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{blue}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{4x^{\,5}}\big)+\big(\color{blue}{2x^{\,4}}+\color{blue}{9x^{\,2}}+\color{blue}{6}\big){\small .}\)
\(\displaystyle (6x^{\,7}+3x^{\,6}+4x^{\,5}){\small }\) бірінші жақшасында ортақ көбейткішті шығарайық.
- \(\displaystyle 6,\ 3\) және \(\displaystyle 4\) сандық коэффициенттерінің ең үлкен ортақ бөлгіші \(\displaystyle ЕҮОБ(6,3,4)=1{\small }\) тең.
- Ең кіші дәрежедегі \(\displaystyle x\) айнымалысы (\(\displaystyle x^{\,7},\, x^{\,6}\) және \(\displaystyle x^{\,5}\) арасынан таңдаймыз) \(\displaystyle x^{\,5}{\small }\) тең.
Яғни, \(\displaystyle (6x^{\,7}+3x^{\,6}+4x^{\,5})\) үшін ортақ көбейткіш \(\displaystyle x^{\, 5}{\small }\) тең. Оны жақшаның сыртына шығарып, келесіні аламыз:
\(\displaystyle 6x^{\,7}+3x^{\,6}+4x^{\,5}=x^{\, 5}(6x^{\,2}+3x+4){\small .}\)
\(\displaystyle (2x^{\,4}+9x^{\,2}+6\,){\small }\) екінші жақшасындағы ортақ көбейткішті шығарайық. Соңғы қосылғыш сан болғандықтан, тек ортақ сандық көбейткішті шығаруға болады.
\(\displaystyle 2,\ 9\) және \(\displaystyle 6\) сандық коэффициенттерінің ең үлкен ортақ бөлгіші \(\displaystyle ЕҮОБ(2,9,6)=1{\small }\)тең. Сондықтан ортақ көбейткіш жоқ (1 қоспағанда) және
\(\displaystyle 2x^{\,4}+9x^{\,2}+6=(2x^{\,4}+9x^{\,2}+6\,){\small .}\)
Келесі жіктеулерде
\(\displaystyle 6x^{\,7}+3x^{\,6}+4x^{\,5}=x^{\, 5}\color{red}{(6x^{\,2}+3x+4)}\) және \(\displaystyle 2x^{\,4}+9x^{\,2}+6=\color{blue}{(2x^{\,4}+9x^{\,2}+6\,)}\)
жақшалар тең болмағандықтан \(\displaystyle \color{red}{(6x^{\,2}+3x+4)} =\not \color{blue}{(2x^{\,4}+9x^{\,2}+6\,)}{\small ,}\)
онда бұл топтастыру нұсқасы сәйкес келмейді.
Келесі топтастыру нұсқасына өтейік (және көбейткіштерге жіктеуді алғанға дейін жалғастыра береміз).
\(\displaystyle \ldots \, \ldots\, \ldots\)
3. Үшінші нұсқа.
\(\displaystyle \color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{blue}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{red}{9x^{\,2}}+\color{blue}{6}=\big(\color{red}{6x^{\,7}}+\color{red}{3x^{\,6}}+\color{red}{9x^{\,2}}\big)+\big(\color{blue}{4x^{\,5}}+\color{blue}{2x^{\,4}}+\color{blue}{6}\big){\small .}\)
\(\displaystyle (6x^{\,7}+3x^{\,6}+9x^{\,2}){\small }\) бірінші жақшасында ортақ көбейткішті шығарайық.
- \(\displaystyle 6,\ 3\) және \(\displaystyle 9\) сандық коэффициенттерінің ең үлкен ортақ бөлгіші \(\displaystyle ЕҮОБ(6,3,9)=3{\small }\) тең.
- Ең кіші дәрежедегі \(\displaystyle x\) айнымалысы (\(\displaystyle x^{\,7},\, x^{\,6}\) және \(\displaystyle x^{\,2}\) арасынан таңдаймыз) \(\displaystyle x^{\,2}{\small }\) тең.
Яғни, \(\displaystyle (6x^{\,7}+3x^{\,6}+9x^{\,2})\) үшін ортақ көбейткіш \(\displaystyle 3x^{\, 2}{\small }\) тең. Оны жақшаның сыртына шығарып, келесіні аламыз:
\(\displaystyle 6x^{\,7}+3x^{\,6}+9x^{\,2}=3x^{\, 2}(2x^{\,5}+x^{\,4}+3){\small .}\)
\(\displaystyle (4x^{\,5}+2x^{\,4}+6\,){\small }\) екінші жақшасындағы ортақ көбейткішті шығарайық. Соңғы қосылғыш сан болғандықтан, онда тек ортақ сандық көбейткішті шығаруға болады.
\(\displaystyle 4,\ 2\) және \(\displaystyle 6\) сандық коэффициенттерінің ең үлкен ортақ бөлгіші \(\displaystyle ЕҮОБ(4,2,6)=2{\small }\) тең. Оны жақшаның сыртына шығарып, келесіні аламыз:
\(\displaystyle 4x^{\,5}+2x^{\,4}+6=2(2x^{\,5}+x^{\,4}+3){\small .}\)
Сонда
\(\displaystyle 6x^{\,7}+3x^{\,6}+9x^{\,2}=3x^{\, 2}\color{blue}{(2x^{\,5}+x^{\,4}+3)}\)
және
\(\displaystyle 4x^{\,5}+2x^{\,4}+6=2\color{blue}{(2x^{\,5}+x^{\,4}+3)}{\small .}\)
Екі өрнектің де \(\displaystyle \color{blue}{(2x^{\,5}+x^{\,4}+3\,)}{\small }\) ортақ көбейткіші бар. Оны жақшаның сыртына шығарайық:
\(\displaystyle 3x^{\, 2}\color{blue}{(2x^{\,5}+x^{\,4}+3)}+2\color{blue}{(2x^{\,5}+x^{\,4}+3)}=\color{blue}{(2x^{\,5}+x^{\,4}+3\,)}(3x^{\,2}+2\,){\small .}\)
Осылайша,
\(\displaystyle \begin{array}{rl}6x^{\,7}+3x^{\,6}+4x^{\,5}+2x^{\,4}+9x^{\,2}+6&=\big(6x^{\,7}+3x^{\,6}+9x^{\,2}\big)+\big(4x^{\,5}+2x^{\,4}+6\big)=\\&=3x^{\, 2}(2x^{\,5}+x^{\,4}+3)+2(2x^{\,5}+x^{\,4}+3)=\\&=(2x^{\,5}+x^{\,4}+3\,)(3x^{\,2}+2\,)\\\end{array}\)
және, демек,
\(\displaystyle 6x^{\,7}+6+9x^{\,2}+3x^{\,6}+4x^{\,5}+2x^{\,4}=(2x^{\,5}+x^{\,4}+3\,)(3x^{\,2}+2\,){\small .}\)
Жауабы: \(\displaystyle (2x^{\,5}+x^{\,4}+3\,)(3x^{\,2}+2\,){\small .}\)