Skip to main content

Теориясы: Қосу, азайту, көбейту және бөлу

Тапсырма

Есептеңіз:

\(\displaystyle 84 \times (23 \times 624 - 14051) - 322=\)

Шешім

Сандық өрнектегі амалдар ретін қойып шығайық:

 3 1 2 4 
\(\displaystyle 84\)\(\displaystyle \times\)\(\displaystyle (23\)\(\displaystyle \times\)\(\displaystyle 624\)\(\displaystyle -\)\(\displaystyle 14051)\)\(\displaystyle -\)\(\displaystyle 322\).

 

1. Бірінші амал:

\(\displaystyle 23 \times 624=14352\).

   \(\displaystyle 6\)\(\displaystyle 2\)\(\displaystyle 4\)
  \(\displaystyle \times\)   
    \(\displaystyle 2\)\(\displaystyle 3\)
 
  \(\displaystyle 1\)\(\displaystyle 8\)\(\displaystyle 7\)\(\displaystyle 2\)
\(\displaystyle +\)     
 \(\displaystyle 1\)\(\displaystyle 2\)\(\displaystyle 4\)\(\displaystyle 8\) 
 
 \(\displaystyle 1\)\(\displaystyle 4\)\(\displaystyle 3\)\(\displaystyle 5\)\(\displaystyle 2\)

 

 

2. Екінші амал:

\(\displaystyle 14352-14051=301\).

 \(\displaystyle 1\)\(\displaystyle 4\)\(\displaystyle 3\)\(\displaystyle 5\)\(\displaystyle 2\)
\(\displaystyle -\)     
 \(\displaystyle 1\)\(\displaystyle 4\)\(\displaystyle 0\)\(\displaystyle 5\)\(\displaystyle 1\)
 
   \(\displaystyle 3\)\(\displaystyle 0\)\(\displaystyle 1\)

 

 

3. Үшінші амал:

\(\displaystyle 84 \times 301=17632\).

   \(\displaystyle 3\)\(\displaystyle 0\)\(\displaystyle 1\)
  \(\displaystyle \times\)   
    \(\displaystyle 8\)\(\displaystyle 4\)
 
  \(\displaystyle 1\)\(\displaystyle 2\)\(\displaystyle 0\)\(\displaystyle 4\)
\(\displaystyle +\)     
 \(\displaystyle 2\)\(\displaystyle 4\)\(\displaystyle 0\)\(\displaystyle 8\) 
 
 \(\displaystyle 2\)\(\displaystyle 5\)\(\displaystyle 2\)\(\displaystyle 8\)\(\displaystyle 4\)

 

 

4. Төртінші амал:

\(\displaystyle 25284-322=24962\).

 \(\displaystyle 2\)\(\displaystyle 5\)\(\displaystyle 2\)\(\displaystyle 8\)\(\displaystyle 4\)
\(\displaystyle -\)     
   \(\displaystyle 3\)\(\displaystyle 2\)\(\displaystyle 2\)
 
 \(\displaystyle 2\)\(\displaystyle 4\)\(\displaystyle 9\)\(\displaystyle 6\)\(\displaystyle 2\)

 

Жауабы: \(\displaystyle 24962\).